1389

## Steric Effects in the Nucleophilic *versus* General Base-catalysed Intramolecular Carboxy-group-assisted Solvolysis of Esters

By H. D. BURROWS and R. M. TOPPING\*

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Intramolecular participation by carboxylate anion in the solvolysis of the hindered ester 2-carboxyphenyl mesitoate in anhydrous methanol, occurs entirely by a nucleophilic mechanism in contrast to aspirin which previously has been shown to involve the kinetically equivalent general base mechanism. and the reactions of certain aspirin analogues.<sup>6,8,9</sup> A critical factor in determining which of the kinetically inseparable general base or nucleophilic mechanisms actually operates was shown to depend upon the relative basicities of attacking group and leaving group<sup>6,7</sup> although the *nature* of the attacking base also appears to affect its catalytic performance;<sup>9</sup> we have now shown that steric effects can be a deciding factor.

The products expected from the reaction of the hindered aspirin analogue, 2-carboxyphenyl mesitoate (I) in dry methanol are (i) mesitoic acid and methyl salicylate only when the carboxy-group acts as an *intra*molecular nucleophile and solvolysis proceeds *via* an anhydride intermediate [route (a) in Scheme]; (ii) methyl mesitoate and salicylic acid only when the carboxy-group acts either as an *intra*molecular general base [route (b)] or general acid [route (c)] or as a result of *inter*molecular attack by methoxide ion upon the hindered ester carbonyl group of (I). The products realised by heating under reflux a solution of ester (I) ( $10^{-4}$ M) and tris(hydroxymethyl)aminomethane

MUCH of the evidence<sup>1-3</sup> in support of a mechanism for the hydrolysis of esters such as aspirin monoanion, involving a rate-determining intramolecular nucleophilic attack by the carboxylate anion upon the ester carbonyl group to give the mixed anhydride of acetic and salicylic acids (which is hydrolysed in turn in a subsequent fast step) recently has been either refuted or re-interpreted.<sup>4-7</sup> The kinetically equivalent process involving participation of carboxylate as a general base is now preferred on the basis of lack of <sup>18</sup>O incorporation<sup>5</sup> into salicylate during aspirin hydrolysis in H<sub>2</sub><sup>18</sup>O, solvent effects,<sup>4</sup> solvent deuterium isotope effects [ $k(H_2O)/k(D_2O)$ ],<sup>7</sup> structure-reactivity correlations,<sup>5</sup> entropy considerations,<sup>5</sup> inability to trap an anhydride intermediate,<sup>6</sup>

 $(10^{-3}M)$  in anhydrous methanol for five days were mesitoic acid and methyl salicylate in 100% yield (superimposition of u.v. spectra). No other products could be detected (v.p.c.; t.l.c.). The apparently unambiguous conclusion to be drawn is that the ester (I) has reacted entirely via intramolecular nucleophilic attack of carboxylate anion to



SCHEME. Mes=2,4,6-trimethylphenyl

- <sup>1</sup> L. J. Edwards, Trans. Faraday Soc., 1950, **46**, 723; 1952, **48**, 696. <sup>2</sup> M. L. Bender, F. Chloupek, and M. C. Neveu, J. Amer. Chem. Soc., 1958, **80**, 5384. <sup>3</sup> M. L. Bender, Chem. Rev., 1960, **60**, 53. <sup>4</sup> E. B. Gorrett, J. Amer. Chem. Soc., 1975, **70**, 510.

- <sup>1</sup> L. Denuel, Chem. Rev., 1900, 00, 55.
  <sup>4</sup> E. R. Garrett, J. Amer. Chem. Soc., 1957, 79, 3401.
  <sup>5</sup> A. R. Fersht and A. J. Kirby, J. Amer. Chem. Soc., 1967, 89, 4853, 4857.
  <sup>6</sup> T. St. Pierre and W. P. Jencks, J. Amer. Chem. Soc., 1968, 90, 3817.
  <sup>7</sup> A. R. Fersht and A. J. Kirby, J. Amer. Chem. Soc., 1968, 90, 5818.
  <sup>8</sup> M. L. Bender and J. M. Lawlor, J. Amer. Chem. Soc., 1963, 85, 3010.
  <sup>8</sup> S. M. Eelton and T. C. Bruice, L. Amer. Chem. Soc., 1969, 01, 6721.

- <sup>9</sup> S. M. Felton and T. C. Bruice, J. Amer. Chem. Soc., 1969, 91, 6721.

## CHEMICAL COMMUNICATIONS, 1970

give the anhydride (II) which is selectively cleaved by methoxide ion at the 'unhindered' salicylyl carbonyl group [route (a)]. This result is in contrast to that observed with aspirin itself<sup>5,6</sup> although differences in  $pK_a$  between attacking-and leaving-groups should be similar for the two analogous esters. Two points of interest emerge. Firstly, participation of carboxylate as a general base which occurs exclusively in the solvolysis of aspirin in water or methanol is entirely suppressed in favour of participation of carboxylate as a nucleophile when steric accessibility of the ester carbonyl is reduced as in ester (I), demonstrating the (perhaps not unexpected) greater steric requirements of the general base mechanism, a result which may prove to have general applicability. Secondly, the catalytic role of carboxylate in model systems or in enzymic processes will clearly be determined by a combination of both electronic and steric factors.

We thank Mrs. Rita Darby for expert technical assistance and the S.R.C. for a research studentship (to H.D.B.).

(Received, August 28th, 1970; Com. 1449).